NerveStim: Progress Report

Group 12: Katie Simons, Taylor Lavender, and Jack Elliott-Higgins

NerveStim: Overview

Who is the client?

Why is it needed?

What does it do?

Client: Matthew MacEwan

- <u>Need Statement</u>: There is a need for a new pain management therapy for patients suffering from chronic pain post-invasive surgery that does not foster independence and does not require addition surgery for explantation
- <u>What it does</u>: This device will include an external controller wirelessly connected to an internal bioresorbable implant. The implant will create a high-frequency alternating current (HFAC) nerve block.

Changes to Preliminary Report

Design specification for Implant

Nerve cuff diameter	1-1.5 mm	Biocompatibility	Must be biocompatible
Bioresorbable layers	9.9 (+-) o.9 nm	Power source	Rechargeable
Bioresorbable device viability	90 days	Charge length	Minimum 1 week
Weight	10 g	Recharge duration	Maximum 3 hours
Electrical stimulation frequency	14kHz – 26kHz	Implant safety	On/off mechanism
Output voltage	50-150 mV	Implant cost	Less than \$200
Wireless communication	4 cm away	Sufficient power	0.5-200 mW
range		Time to completion	6 months
Wireless communication frequency	2.4 GHz	Safe current density	1-10 mA
Wireless communication	Radio frequency	HFAC block	Block necessary
protocol		Adjustable size	Size should be
Wireless power range	4 cm away		adjustable

Changes to Preliminary Report

Design Specifications for Controller

Size	13x18x5 cm		Trans
Weight	200 g		Char
Power source	Rechargeable		Rech
Communication	Wireless		Cont
Wireless communication range	4 cm away	\langle	Com hard
Wireless communication protocol	Radio frequency (RF)		Secu
Wireless communication frequency	2.4 GHz		Rech
Transmission Rate	At least 3 Mbps		conv
Wireless power range	4 cm away		
Wireless power safety	0.5 – 200 mW		Sutti
Biocompatibility	Does not need to be		Time
	biocompatible		Com
Transmission Voltage	150-250 mV		Acce

Transmission duration	100 – 300 µS
Charge period	Minimum 1 week
Recharge duration	Maximum 3 hours
Controller cost	Less than \$200
Compatibility with hardware	100% compatibility required
Security	100% secure
Energy consumption	Less than 6 W
Rechargeability convenience	Device should not require the patient to spend excessive time recharging it
Sufficient output	7-12 V
Time to completion	6 months
Compatibility with battery	100% compatible
Accessibility	Accessible for all patients – it is not prohibitively expensive and does not depend on smartphone ownership

Design Alternatives: Overview

- Six Categories of Design:
 - Data Transmission
 - External Power
 - Internal Power
 - Controller Configuration
 - Computer Hardware
 - Electrode Configuration

1. Wifi

2. Bluetooth

3. Zigbee

4. Thread

Wifi

- Advantages
 - Data transmission frequency
 - Security features
 - High data throughput
- Bluetooth
- Advantages
 - Data transmission frequency
 - Transmission power
 - Secure
 - Compatible with hardware

Disadvantages

- Range of communication
- Slow transmission rate

- Disadvantage
 - Expensive
 - Not as compatible with Arduino
 - Susceptible to security breaches

1. Wifi

2. Bluetooth

3. Zigbee

4. Thread

fHREAD

1. Wifi

2. Bluetooth

3. Zigbee

4. Thread

Specification	Weight	Ρ	otential S	olutions	5
Legend 10: Most Prefer 0: Least Prefer	rred red	WiFi	Bluetooth	Zigbee	Thread
Safety	10	10	10	10	10
Production Cost	8	7	8	8	7
Compatibility with Hardware	10	9	10	5	5
Security	9	7	9	9	9
Wireless	10	10	10	10	10
Transmission Rate	7	7	6	5	5
Communication Range	5	5	5	5	5
Communication Frequency	5	5	5	5	5
Energy Consumption	7	5	6	7	6
Weighted Tot	al	65	(69)	64	62

Table 1. Pugh Chart: Data Transmission

- 1. Single Use Alkaline
- 2. Single Use Lithium
- 3. Rechargeable NiMH
- 4. Rechargeable Lithium Ion
- 5. Plug and Socket

Single Use Lithium

Single Use Alkaline

- 1. Single Use Alkaline
- 2. Single Use Lithium
- 3. Rechargeable NiMH
- 4. Rechargeable Lithium Ion
- 5. Plug and Socket

Rechargeable Lithium

- Advantages
 - Lightweight
 - No need for replacement
 - Longer charge duration
 - High energy density
 - Short charge period

- Disadvantages
 - Very powerful
 - Expensive

Rechargeable Nickel-Metal Hydride (NiMH)

- Advantages
 - Cheap
 - No risk of damage

- Disadvantages
 - Long charge period
 - Short charge duration
 - Lower energy density
 - Incompatible with hardware

- 1. Single Use Alkaline
- 2. Single Use Lithium
- 3. Rechargeable NiMH
- 4. Rechargeable Lithium Ion
- 5. Plug and Socket

Plug and Socket

- Advantages
 - Sufficient power
 - Compatible with hardware

- Disadvantages
 - No worldwide standard
 - Safety hazard
 - Requires a socket at all times

- 1. Single Use Alkaline
- 2. Single Use Lithium
- 3. Rechargeable NiMH
- 4. Rechargeable Lithium Ion
- 5. Plug and Socket

Specification	Weight	Potential Solutions			lutions	
Legend 10: Most Preferred 0: Least Preferred		Single Use Alkaline	Single Use Lithium	Rechargeable NiMH	Rechargeable Lithium lon	Plug and Socket
Safety	10	10	7	10	7	9
Production Cost	8	8	8	7	7	6
Weight	8	7	8	5	6	7
Rechargeability Convenience	7	3	3	7	7	1
Sufficient Output	10	10	0	0	10	10
Charge Period	9	9	9	5	8	9
Charge Duration	8	4	1	8	7	1
Compatibility with Hardware	9	9	0	0	9	9
Weighted To	tal	60	36	42	$\begin{pmatrix} 61 \end{pmatrix}$	52

Table 2. Pugh Chart: External Power

- 1. Thermoelectric Generator
- 2. Chemical Energy Battery
- 3. Piezoelectric Generator
- 4. Passive Power
- 5. BIONs

Thermoelectric Generator (TEGs)

- Advantages
 - Power source preexisting
 - Safe
 - Effective

• Not bioresorbable

Costly

Heat source

Cool side

рĢ

 \odot

Θn

÷

Θ

Chemical Energy Batteries

- Advantages
 - Preexisting power source
 - Safe

Disadvantages

- Device lifespan
- Insufficient power
- Not bioresorbable

- 1. Thermoelectric Generator
- 2. Chemical Energy Battery
- 3. Piezoelectric Generator
- 4. Passive Power
- 5. BIONs

Piezoelectric Generator

- Advantages
 - Inexpensive
 - Could be made bioresorbable

- Disadvantages
 - Time cost
 - Power source not preexisting
 - Inefficient power

- 1. Thermoelectric Generator
- 2. Chemical Energy Battery
- 3. Piezoelectric Generator
- 4. Passive Power
- 5. BIONs

Passive Power

- Advantages
 - Easily controllable
 - Safe
 - Viable
 - Bioresorbable
 - Short production time

- Disadvantages
 - Production cost

- 1. Thermoelectric Generator

- 5. BIONs

BIONs

- Advantages
 - Sufficient power
 - Biocompatible

• Disadvantages

27mm long

BION3 ABC

BION

2.0mm dia. 16.5mm long dia

16mm long

- Production cost
- Production time
- Not bioresorbable

- 1. Thermoelectric Generator
- 2. Chemical Energy Battery
- 3. Piezoelectric Generator
- 4. Passive Power
- 5. BIONs

Table 3. Pugh Chart: Internal power						
Specification	Weight		Potential Solutions			
Legend 10: Most Prefe 0: Least Prefe	erred rred	Thermal Energy Generator	Chemical Energy Battery	Piezoelectric Generator	Passive Powering	BIONs
Device Viability	6	6	2	5	6	6
Sufficient Power	10	0	2	10	10	10
Time to Completion	5	3	3	3	5	1
Safety	10	10	10	10	10	10
Production Cost	8	2	5	8	7	3
Biocompatibility	9	0	0	8	<u>°</u>	5
Weighted To	tal	21	22	44	47	35

- 1. Arduino
- 2. Raspberry Pi
- 3. Waspmote

Arduino

- Advantages
 - Small power consumption
 - Ideal size
 - Cheap
 - Many accessories available

- Disadvantages
 - Weight
 - Communication

1. Arduino

- 2. Raspberry Pi
- 3. Waspmote

Raspberry Pi

- Advantages
 - Versatile
 - More input/output options

- Weight
- Size
- Costly

1. Arduino

2. Raspberry Pi

3. Waspmote

Table 4. Pugh Chart: Computer Hardware						
Specification	Weight	Weight Potential Solutio				
Legend 10: Most preferred 0: Least preferred			Raspberry Pi	Waspmote		
Size	9	9	6	7		
Production Cost	8	8	8	2		
Weight	10	9	8	10		
Necessary Power	8	8	8	5		
Compatibility with Battery	7	7	7	3		
Communication	7	6	7	4		
Transmission Voltage	8	8	8	8		
Weighted Total		55	52	39		

Design Alternatives: Controller Configuration

1. Full Custom Build

2. Phone app and Custom hardware

Full Custom Build

- Advantages
 - Freedom of design
 - Inexpensive
 - Highly accessible

- Disadvantages
 - No disadvantages seen

Phone app and Custom Hardware

- Advantages
 - Size
 - Inexpensive

Disadvantages

- Coding-intensive
- Accessibility issues
- Hardware compatibility

Design Alternatives: Controller Configuration

1. Full Custom Build

2. Phone app and Custom hardware

Specification	Potential So	olutions	
Legend 10: Most prefer 0: Least preferr	Custom Build	Phone App / Custom Hardware	
Size	10	10	10
Accessibility	10	10	3
Production Cost	8	8	8
Time to Completion	8	8	2
Weight	9	9	9
Power Source	9	9	4
Hardware Compatibility	10	10	1
Safety	10	10	10
Weighted Tota	al	(74)	47

Table 5. Pugh Chart: Controller Configuration

Design Alternatives: Electrode Configuration

1. Tripolar ribbon-type cuff electrode

- 2. Bipolar anode-cathode cuff electrode
- 3. Dual macro-sieve electrode assembly

Tripolar ribbon-type cuff electrode

- Advantages
 - HFAC block
 - Adjustable size
 - Safe current density

- Disadvantages
 - Not bioresorbable yet
 - Production cost

Design Alternatives: Electrode Configuration

- 1. Tripolar ribbon-type cuff electrode
- 2. Bipolar anode-cathode cuff electrode
- 3. Dual macro-sieve electrode assembly

Bipolar anode-cathode cuff electrode

- Advantages
 - Creates HFAC block
 - Bioresorbable
 - Inexpensive
 - Safe current density

- Disadvantages
 - No disadvantages seen

- 1. Bipolar anode-cathode cuff electrode
- 2. Tripolar ribbon-type cuff electrode
- 3. Dual macro-sieve electrode assembly

Dual macro-sieve electrode assembly

- Advantages
 - HFAC block
 - Safe current density

- Disadvantages
 - Production cost
 - Not yet bioresorbable
 - Adjustability

Design Alternatives: Electrode Configuration

1. Bipolar anode-cathode cuff electrode

2. Tripolar ribbon-type cuff electrode

3. Dual macro-sieve electrode assembly

Table 6. Pugh Chart: Electrode Configuration

Specifications	Weight		Potential Solu		itions
Legend 10: Most Preferred 0: Least Preferred			Bipolar anode- cathode	Tripolar ribbon type	Dual macro-sieve
Safe current der	nsity	10	10	10	10
HFAC block 9		8	8	7	
Bioresorbabl	Э	10	10	8	8
Production Co	st	8	8	7	6
Adjustable siz	able size 5		5	5	4
Weighted Total			(41)	38	35

Overview of Chosen Solution

Issue 1: Bluetooth

Issue 2: Rechargeable Lithium Ion Battery

Issue 3: Passive Power

Issue 4: Arduino

Issue 5: Full custom build

Issue 6: Bipolar cuff electrode

Questions?

- 1. Pullen, John Patrick. "Here's How Wi-Fi Actually Works." Time, Time, 24 Apr. 2015, time.com/3834259/wifi-how-works/.
 - "Bluetooth vs Wi-Fi." Bluetooth vs Wi-Fi Difference and Comparison | Diffen, www.diffen.com/difference/Bluetooth_vs_Wifi.
- 3. Franklin, Curt. "How Bluetooth Works." HowStuffWorks, 28 June 2000, electronics.howstuffworks.com/bluetooth4.htm.
- 4. Rouse, Margaret. "What Is Zigbee? Definition from WhatIs.com." IoT Agenda, 2017, internetofthingsagenda.techtarget.com/definition/ZigBee.
- 5. Stables, James. "Zigbee Explained: Plus the Best Devices That Use It." The Ambient, 11 Sept. 2018, www.the-ambient.com/guides/zigbee-devices-completeguide-277.
- 6. Pfeil, Alisa. "Press Releases." Introducing Thread: A New Wireless Networking Protocol for the Home > Thread Group, 15 July 2014, www.threadgroup.org/news-events/pressreleases/ID/20/Introducing-Thread-A-New-Wireless-Networking-Protocol-for-the-Home.
- 7. Parrish, Kevin. "ZigBee, Z-Wave, Thread and WeMo: What's the Difference?." Smart Home. 12 Dec. 2017, https://www.tomsguide.com/us/smart-homewireless-networkprimer,news-21085.html.
- 8. Bausch, Jeffrey. "Rechargeable Battery vs Regular Battery." Electronic Products, 23 Sept. 2016, www.electronicproducts.com/Power_Products/Batteries_and_Fuel_Cells/Rechargeable_battery_vs_regular_battery.aspx.
- 9. "How to Choose Batteries." REI, www.rei.com/learn/expert-advice/batteries.html.

2.

- 10. Leakeem, John. "NiMH vs. Li-Ion: A Battery Comparison." TurboFuture, 24 Mar. 2017, turbofuture.com/misc/Which-is-better-Nickel-Metal-Hydride-NiMH-or-Lithium-Ion-Li-ionbatteries.
- 11. . "A Better Understanding of Rechargeable and Replaceable Batteries." A Better Understanding of Rechargeable and Replaceable Batteries, Omnica Corporation Product Development, www.omnica.com/a-better-understanding-of-rechargeable-andreplaceable-batteries/.
- 12. "Plug & Socket Types." World Standards, 9 Oct. 2017, www.worldstandards.eu/electricity/plugs-and-sockets/.
- 13. 13. Romero, Edwar. Powering Biomedical Devices. Elsevier Academic Press, 2013.
- 14. "Scientific Guide to Understanding and Using TEG Power!" Knowledge Base for Understanding TEGs TEG Talk, 21 Apr. 2018, www.tegmart.com/info/guidetounderstanding-and-using-teg-power-and-products/.
- 15. "Building a Piezoelectric Generator." Teach Engineering, www.teachengineering.org/activities/view/uoh_piezo_lessono1_activity1.
- 16. Prochazka, et al. "First Permanent Implant of Nerve Stimulation Leads Activated by Surface Electrodes, Enabling Hand Grasp and Release." Neurorehabilitation and Neural Repair, vol. 26, no. 4, 2011, pp. 335–343., doi:10.1177/1545968311420443.
- 17. Loeb, Gerald E., et al. "The BION Devices: Injectable Interfaces with Peripheral Nerves and Muscles." Neurosurgical Focus, 2006, pp. 1–9., doi:10.3171/foc.2006.20.5.3.

Sources

18. "Tech Specs." Arduino Uno Rev3, 2018, store.arduino.cc/usa/arduino-uno-rev3.

19. "Raspberry Pi 3 Model B+ - Specifications." Raspberry Pi Forums, 2018, www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/.

20. Adafruit Industries. "Raspberry Pi 3 - Model B+ - 1.4GHz Cortex-A53 with 1GB RAM." Adafruit Industries Blog RSS, 2018, www.adafruit.com/product/3775.

21. "Waspmote Technical Overview." Libelium Connecting Sensors to the Cloud R 21

22. Koo, Jahyun, et al. "Wireless Bioresorbable Electronic System Enables Sustained Nonpharmacological Neuroregenerative Therapy." Nature Medicine, Aug. 2018, doi:10.1038/s41591-018-0196-2.

23. Ray, Soumyajit, "Characterization of the high frequency alternating current block in the rat sciatic nerve using cuff electrodes and macro-sieve electrode" (2017). Engineering and Applied Science Thesis & Dissertations. 265.

24. Arduino Uno Rev3, store.arduino.cc/usa/arduino-unorev3?fbclid=IwARo95wFEDpYxgD9EAHeQzLGkPhuivyd5qn7z8TjhBQI7wRvBzsHaiQ5M-Q.

25. "HiLetgo HC-05 6 Pin Wireless Bluetooth RF Transceiver Module Serial BT Module for Arduino." Amazon, Amazon, www.amazon.com/HiLetgo-Wireless-BluetoothTransceiver-Arduino/dp/Bo71YJG8DR.

26. "TRIBE Water Resistant Cell Phone Armband Case." Amazon, Amazon, https://www.amazon.com/Resistant-Armband-Samsung-AdjustableElastic/dp/BooSXRXUFE/ref=sr_1_1_sspa?ie=UTF8&qid=1543247625&sr=8-1- spons&keywords=arm+band&psc=1.

27. "TENS Electrodes - Value Wired 2x4 Replacement Pads for TENS Units." Amazon, Amazon, https://www.amazon.com/TENS-Electrodes-Value-ReplacementDiscount/dp/Bo1MRJ93AK/ref=sr_1_16_a_it?ie=UTF8&qid=1543259155&sr=8-16&keywords=tens%2Belectrode&th=1.

28. "EBL 9V Li-ion Rechargeable Batteries (2PC) Smart 9V Battery Charger." Amazon, Amazon, https://www.amazon.com/EBL-Rechargeable-Batteries-BatteryCharger/dp/Bo79G37Y61/ref=sr_1_8?ie=UTF8&qid=1542651313&sr=8-8&keywords=rechargable+batteries+9v. 22

29. "Parts Express 9V Battery Clip (2 Pack)." Amazon, Amazon, https://www.amazon.com/Parts-Express-Battery-ClipPack/dp/Bo1IFPoN3U/ref=sr_1_7?ie=UTF8&qid=1542651064&sr=8-7&keywords=9v+battery+connector.

30. Adafruit Industries. "Assembled Standard LCD 16x2 + Extras - White on Blue." Adafruit Industries Blog RSS, www.adafruit.com/product/1447.

31. Adafruit Industries. "Breadboard Trim Potentiometer." Adafruit Industries Blog RSS, www.adafruit.com/product/356.

32. Adafruit Industries. "Potentiometer Knob - Soft Touch T18 - White." Adafruit Industries Blog RSS, www.adafruit.com/product/2047.

33. Adafruit Industries. "Half-Size Breadboard." Adafruit Industries Blog RSS, www.adafruit.com/product/64.

34. Adafruit Industries. "Breadboard-Friendly SPDT Slide Switch." Adafruit Industries Blog RSS, www.adafruit.com/product/805.

35. "22 AWG Light Blue Solid Tinned-Copper Hook-Up Wire 100 Feet." How It Works: Xbox Kinect, www.jameco.com/z/9313-LB-22-AWG-Light-Blue-Solid-Tinned-Copper-Hook-UpWire-100-Feet_36768.html.

36. "CJMCU AD9833 Function Generator Module." Amazon, Amazon, www.amazon.com/CJMCU-9833-AD9833-AD9833BRMZ-squaretriangle/dp/Bo73TWLHLZ.

37. "Charging by Conduction." The Physics Classroom, www.physicsclassroom.com/class/estatics/Lesson-2/Charging-by-Conduction.

38. "Charging by Induction." The Physics Classroom, www.physicsclassroom.com/class/estatics/Lesson-3/Charging-by-Induction.

Sources

Slide Appendix

1. Wifi

2. Bluetooth

3. Zigbee

4. Thread

Zigbee

- Advantages
 - Transmission frequency
 - Inexpensive
 - Low power rate
 - Range of communication

Thread

- Advantages
 - Low power
 - Secure
 - Transmission frequency

- Disadvantages
 - Incompatible with hardware
 - Low data communication rate

- Disadvantages
 - Incompatible with hardware
 - Low data communication rate

- 1. Single Use Alkaline
- 2. Single Use Lithium
- 3. Rechargeable NiMH
- 4. Rechargeable Lithium Ion
- 5. Plug and Socket

Single Use Lithium

- Advantages
 - Safe
 - Lightweight

- Disadvantages
 - Insufficient output
 - Potential of corrosion
 - Incompatible with hardware

Single Use Alkaline

- Advantages
 - Safe
 - Sufficient output
 - Compatible with hardware
 - Cheap

- Disadvantages
 - Cannot recharge
 - Potential for corrosion

1. Arduino

- 2. Raspberry Pi
- 3. Waspmote

Waspmote

- Advantages
 - Complex
 - Compatible and versatile
 - Lightweight

- Disadvantages
 - Extremely expensive
 - Communication

Budget

Table 7. Budget						
ltem	Quantity	Cost	Source			
Arduino Uno Rev3	1	\$22	Arduino Store			
HC-05 Bluetooth Transceiver	1	\$8.50	Amazon			
Band	1	\$20	Amazon			
TENS Electrodes	1 pack	\$9.95	Amazon			
Battery	2	\$17	Amazon			
Battery connector	1	\$5	Amazon			
LCD Screen	1	\$11	Adafruit			
Potentiometer	3	\$3.75 (\$1.25 each)	Adafruit			
Potentiometer Knobs	3	\$1.50 (\$0.50 each)	Adafruit			
Half-size Breadboard	1	\$5	Adafruit			
Power Switch	1	\$0.95	Adafruit			
Wiring	100 feet	\$8.50	Jameco Electronics			
Function Generator	1	\$10	Amazon			
Bioresorbable Implant	1	\$O	Dr. MacEwan			
3D Printed Casing	1	\$O	BME Department			
Total		\$123.15 (before tax)				